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The study of metal string complexes with 1-D transition metal frameworks (Fig.1) began in the 

early 1990s. Since these complexes provide great insight into multiple metal-metal bonds, and may 

have potential applications as molecular wires (Fig.2), this field of research has grown in the past 

20 years. As such, the electronic structure of the simplest trinuclear complexes, the supporting ligand 

systems, and single molecular conductance of metal string complexes are discussed. This review 

will introduce the development of this field and summarize some important results in the newly 

designed heteronuclear metal string complexes (HMSCs). These molecules may be of great interest 

in studying the nature of heterometallic electronic effects and molecular electronic applications. 
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Figure 2: An Electric Wire and a  

Miniature Molecular Metal Wire 

Figure 1: Molecular Model of Metal String 

Complex with Quadruple Ligands 
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Photocatalytic CO2 reduction is attracting much attention from the viewpoints of the utilization of 

solar energy and recycling of CO2 and is expected as a central technology in artificial 

photosynthesis.[1] In this lecture, the catalytic abilities of trans(Cl)-Ru(bpy)(CO)2Cl2 (bpy: 2,2’-

bipyridine) and the derivatives for CO2 reduction will be described (Figure 1).[2] The reaction 

mechanism is elucidated in many parts but 

remains unknown in some features.[3] 

The photocatalytic CO2 reduction 

proceeds by irradiating visible light (> 400 

nm) in the N-dimethylacetamide 

(DMA)/water (9:1 v/v) solution containing 

[Ru(bpy)3]
2+ as the photo-sensitizer, 1-

benzyl-1,4-dihydronicotinamide (BNAH) 

as the electron donor and the catalyst. The 

reaction mechanism does not only depend 

on the electronic structures of the catalysts 

but also the reaction conditions such as the 

catalyst concentrations. It also depends on 

the electron-injection speeds from the one-

electron reduced species of photo-sensitizer 

to the catalyst. 

The application of the photocatalytic 

CO2 reduction towards artificial 

photosynthesis will be discussed. 
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Figure 1.  Photocatalytic CO2 Reduction by 

trans(Cl)-[Ru(bpy)(CO)2Cl2] and the derivatives. 
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Metal-to-ligand charge transfer (MLCT) excited states of dπ6-type transition metal complexes 

represented by [Ru(bpy)3]
2+ (bpy = 2,2′-bipyridine) have been utilized in various photochemical 

applications such as solar–energy conversion systems, light-emitting devices and sensing owing to 

their intense visible-light absorption and phosphorescence from the long-lived triplet excited state [1]. 

Therefore, controlling their photofunctionalities (e.g., light absorption, emission and photoinduced 

reaction behaviors) is of primary importance. There are numerous reports on synthetic tuning of the 

electronic structures of a complex by varying a combination of metal center and ligands and/or by 

introducing a functional group(s) in a ligand(s) [2]. In addition to such synthetic strategy, surrounding 

environment is another important factor to characterize the photofunctionalities of a metal complex 

[3]. Here, we focused on electric charges of metal complexes and succeeded in tuning photo-

physical/photochemical properties of ionic metal complexes by hybridizing with ionic nanospheres, 

a class of ion-exchange resins with a diameter of <300 nm. 

Polypyridyl ruthenium(II)/osmium(II) and cyclometalated iridium(III) complexes doped in the 

ionic nanospheres exhibited intense and long-lived emission arising from decreased nonradiative 

decay rate constants. Such long-lived excited states of the metal complexes in the nanospheres are 

advantageous for photosensitized reactions, and multiple ionic species can be doped in a nanosphere. 

In practice, emission from [Ru(bpy)3]
2+ in the nanosphere was reduced in the presence of codoped 

methyl viologen dication (MV2+), and >60% quenching was obtained even by 100 nmol/mg MV2+ 

(almost equivalent to [Ru(bpy)3]
2+ content) [4]. Similar efficient photoinduced reaction was also 

observed in the energy-transfer systems. 
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